FOUNDATION ENGINEERING

Geotechnical Principles and Practical Applications

RICHARD L. HANDY

Foundation Engineering

About the Author

Richard L. Handy is a Distinguished Professor Emeritus in the Department of Civil, Construction and Environmental Engineering at Iowa State University. A sought-after teacher, he served as the major professor for over 60 graduate students, many of whom have gone on to make major contributions in geotechnical engineering. A large number of former students and associates recently collaborated to endow a Professorship in his name, and a book of collected papers was issued in his honor.

Dr. Handy may be best known as the inventor of Borehole Shear Tests that perform in-situ measurements of cohesion and friction in soils and rocks. The soil test was used in snow when he and six engineering students were conducting research on an epic voyage of a large ship in the ice-bound Northwest Passage. They also observed the catenary shape of an igloo, which he later adapted to solve a problem that had intrigued Terzaghi, to mathematically define arching action in soils. The analysis revealed that conventional analyses are on the unsafe side and explained a wall failure where there were four fatalities. It received the Thomas A. Middlebrooks Award of the American Society of Civil Engineers.

Dr. Handy also was active in geology. He proposed a variablewind hypothesis to explain the distribution of wind-blown silt (loess), and showed that the rate of growth of a river meander slows down in time according to a *first-order rate equation*. He then applied the same equation to rates of primary and secondary consolidation in engineering. In recognition of his contributions to geology he was elected a Fellow in the Geological Society of America and the American Association for the Advancement of Science.

Known for his sense of humor, Dr. Handy liked to point out that it is better to have a joke that turns out to be an invention than an invention that turns out to be a joke. His *The Day the House Fell*, published by the American Society of Civil Engineers, Reston, VA, for non-engineers, became a best-seller. His book *FORE and the Future of Practically Everything* published by Moonshine Cove Publishing, Abbeville, SC, adapts first-order rate equations to practically everything, including track world records and baseball home runs.

Dr. Handy also founded and is the Past President of a company that bears his name. The company manufactures and sells geotechnical instruments, with emphasis on in-situ test methods that were created and developed under his direction.

Foundation Engineering Geotechnical Principles

and Practical Applications

By Richard L. Handy, Ph.D.

Distinguished Professor Emeritus Iowa State University

New York Chicago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto Copyright © 2020 by McGraw-Hill Education. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-1-26-002604-7 MHID: 1-26-002604-3

The material in this eBook also appears in the print version of this title: ISBN: 978-1-26-002603-0, MHID: 1-26-002603-5.

eBook conversion by codeMantra Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Information contained in this work has been obtained by McGraw-Hill Education from sources believed to be reliable. However, neither McGraw-Hill Education nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw-Hill Education nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill Education and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education's prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED "AS IS." McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUD-ING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Contents

	Preface x		
1	Defining What Is There		
	1.1	The Three Most Common Construction Materials	1
	1.2	Two Classes of Foundations	2
		Support of Deep Foundations	2
		Expansive Clavs Can Be Expensive Clavs	2
		End Bearing on Rock	2
		Ground Improvement	3
	1.3	Residual Soils.	3
	210	Travel Is Wearing	3
	1.4	Soil Lavers Created by Weathering	4
		Topsoil "A Horizon"	4
		Subsoil "B Horizon"	5
		Shrinkage Cracks and Blocky Structure in Expansive Clays	5
	1.5	Vertical Mixing in Expansive Clay	6
	1.6	Influence from a Groundwater Table (or Tables)	6
	2.00	Groundwater Table and Soil Color.	6
		A Perched Groundwater Table	6
	1.7	Intermittent Recycling	7
	1.8	Soil Types and Foundations	7
		Influence of a Groundwater Table	8
		Pull-up of Deep Foundations by Expansive Clay	9
	1.9	Agricultural Soil Maps	9
		The Soil Series	9
	1.10	Distinguishing between Alluvial Soils	9
		Rivers and Continental Glaciation	10
		Meanders and Cutoffs	10
		Oxbow Lake Clay	11
		Alluvial Fans	12
		Natural Levees	12
		Slack-Water (Backswamp) Floodplain Deposits	12
		Air Photo Interpretation	12
	1.11	Wind-Deposited Soils	13
		Sand Dunes	13
		Eolian Silt Deposits	13
	1.12	Landslides	14
		Landslide Scarps	14
		A No-No! Landslide Repair Method	15
		When Landslides Stop	16

		Recognizing Landslides	16
		Not a Good Place for a Patio	16
	1.13	Stopping a Landslide	16
		Drainage	16
		Structural Restraints: Piles, Stone Columns, and	
		Retaining Walls	17
		Chemical Stabilization	17
		Drilled Quicklime	17
	1.14	Rock That Isn't There	18
		Near-Surface Features	18
		Shallow Caverns and Sinks	19
		Locating Underground Caverns	20
		Abandoned Mine Shafts and Tunnels	20
		Tunneling Machines and the Rock That Isn't There	20
	1.15	The Big Picture	21
		Mountain Ranges, Volcanoes, and Earthquakes	21
		Soil Responses to Earthquakes	21
		Earthquake Recurrence Intervals	22
	1.16	The Walkabout	23
		Problems	23
		Further Reading	24
2	Catti	ng along with Classification	25
2	2 1	A Hands On Experience	25
	2.1	An Engineered Soil Moisture Content	25
	2.2	Standardizing the Plastic Limit Test	25
	2.3	The Plastic Limit in Engineering	20
	2.4	Coing from Plastic and Romoldable to Liquid and Elowable	20
	2.4	Standardizing the LL Test	27
		The Fall Cone Test	27
	25	The Plasticity Index	28
	2.5	Atterberg Limits in Soil Classification	20
	2.0 2.7	WWII and New Rules for Soil Classification	30
	2.7	Atterberg Limits and Criteria for Expansion	31
	2.0	Kinds of Clay Minerals	31
	2.)	A Lavered Crystal Structure	31
		An Expansive Crystal Structure	32
		Coing Tribal	34
		When Sodium Na ⁺ Replaces Calcium Ca ⁺⁺	34
		Drilling Mud	34
	2 10	A Hands-On Test for Expansive Clay	24
	∠. 10	Field Test	24
	2 11	Some Cluce to Expansive Clay	2/
	2.11 2.12	Massuring Soil Particle Sizes	25
	Z.1Z	Statistical Interpretation	32
		Defining Clay Size	26
			30

	2.13	Particle Sizes Determined from Sedimentation Rates in Water	36
		Performing a Sedimentation Test	36
		Defining Clay Size	38
	2.14	Some Soil Characteristics Related to Grain Size	
		Distribution Curves	38
	2.15	Defining Size Grades	38
		Gravel/Sand	38
		Sand/Silt	38
		Clay and Silt	39
		Expansive versus Non-expansive Clay	39
		Salt versus Fresh Water Clay Deposits	39
		Problems	39
		Further Reading	40
2	Four	dation Sottlement	11
3	70UII	Castles and Cathodrals	41
	5.1	Cashed rale	41
	2.2	A Geigentific Agence of the Foundation Settlement	41
	3.2	The Test	41
		A Furgle Moment	42
	2.2		42
	3.3 2.4	A mount of Cattlement	43
	5.4	Void Datio and Cattlement	45
		Coloulating a Vaid Datio	45
	2 5	Calculating a volu Katio	43
	3.5	Compression index	40
	3.0	Consolidation Kate	40
	27	Demining a Drainage Distance	40
	3.7	Fore water Pressure and Foundation bearing Capacity	40
	20	Para Mater Program Dissingtion and Pate of Drimony	40
	3.0	Consolidation	10
	2.0	Evaluation C	40
	2.10	Δ Patarana Time for 00 Demonst Primary Consolidation	49
	3.10 2.11	It's Not Over Until It's Over Secondary Consolidation	50
	2.11	First Order Pate Equations	50
	3.12	Field Time for Secondary Consolidation	50
	5.15	Field Data	52
	214	Defining a Procenselidation Processire	52
	5.14	Casagranda Method	52
		Casagranue Meniou	55
		Use and Misuse of OCP	55
	3 15	Lambo's Stross Path Approach to Sottlement	54
	3.10	Differential Sottlement	54
	0.10	Problems with Building Additions	55
	3 17	The Other Shee	55
	5.17	Drohlama	50
		11001011115	50

		References Further Reading	57 57
4	Soils	Behaving Badly	59
	4.1	Expansive Clays	59
		Expansive Clay in a Consolidation Test	59
	4.2	Two Classes of Expansive Clays	60
		Type G Clays	60
		Type P Clays	60
		How a Layer of Expansive Clay Can Cause Trouble	60
		Nature's Color Coding	60
	4.3	Sorting Out Floodplain Clays	61
		What Makes River Floodplains Wide	61
		Braided Rivers	61
		Meandering Rivers	61
		A Shift from Braided to Meandering	61
	4.4	Floodplain Soils of Meandering Rivers	62
		Oxbow Lake Clay	62
		Depth and Shape of an Oxbow	62
		Slack-Water or Backswamp Deposits.	62
	4.5	Deep Tropical Weathering and Expansive Clay	63
	4.6	A Guide to Expansive Clay	63
	4 17	Crystal Structure in Control	63
	4.7	Field Evidence for Expansive Clay.	64
	4.0	More Bad Karma	64
	4.8	The Chaineany Method	65 65
		Structural Claba Crada Roama and Dilag	65
		Stripping off the Active Laver	65
		Observations of Strange Field Behavior	67
	49	The Replacement Method	67
	1.7	How Does It Work?	67
		New Rule for Control of Expansive Clay	68
		Clues to Between-Laver Stacking of Water Molecules	68
		Hypothesis.	69
		Why Does Clay Expansion Stop at 3 Lavers?	69
		What's in a Name?	69
	4.10	Chemical Stabilization of Expansive Clay with Lime	69
	4.11	Collapsible Soils	70
		Delayed Collapse	70
		Collapsible Alluvium	71
	4.12	Regional Changes in Properties of Wind-Deposited Soils	71
	4.13	Quick Clays!	72
		Vane Shear Does Not Just Measure Soil Cohesion	72
	4.14	Liquefaction!	73
		Identifying Vulnerable Soils	73

		Earthquakes, Volcanoes, and the "Ring of Fire"	73
		Made Earthquakes	74
	4.15	Pretreatment to Prevent Liquefaction	74
	4.16	Earthquake Dynamics	75
		Recurrence Intervals	75
	4.17	Ouicksand	76
	4.18	Blessed Are the Computers But Will They Really	
		Inherit the Earth?	76
		Problems.	76
		References	77
	_		
5	Stres	ses in Soils	79
	5.1	Concentrated Stresses.	79
	5.2	Adapting Boussinesq Theory	80
	5.3	A Snag in the Relationship	81
	5.4	Approximating the Pressure Distributions	81
	5.5	Preloading	82
	5.6	A Plate Bearing Test as a Model Foundation	84
	5.7	Performing a Plate Bearing Test	85
	5.8	The Progressive Nature of a Bearing Capacity Failure	86
	5.9	Plate Bearing Tests on Weathered Soil Profiles	86
	5.10	Foundation Stresses Transferred to Nearby Unyielding Walls	88
	5.11	Strength Gains from Aging	89
		Interruptions during Pile Driving	90
	5.12	A Convenient Maximum Depth for Pressure Calculations	90
		Problems.	90
		References	91
6	Errole	esting Soil Shoon Strongth	02
0	Evalu	Baaring Soll Shear Strength.	93
	6.1	Bearing Capacity and Settlement	93
	6.2		93
		Friction Angle and Slope Angle	94
		Amontons' Second Law	94
		The Greek Connection	95
		Coulomb's Equation	95
	6.3	Friction Angle in Soils	96
		Dilatancy in Design	96
	6.4	A Direct Shear Test	96
		Influence of Layering	97
		The Borehole Shear Test (BST)	98
	6.5	Unconfined Compression Test	100
	6.6	Mohr's Theory	100
		Pore Water Pressure	102
	6.7	A Difficult Problem	102
		Stage Testing	103
		Lambe's Stress Path Method	103
		What about the Intermediate Principal Stress?	103

	6.8	Statistical Analysis of Test Data	104
		$R^2(R \text{ squared})$	104
		Triaxial Shear Tests	104
		Problems	104
		References	105
		Further Reading	105
7	Shall	ow Foundation Bearing Capacity	107
	7.1	Bearing Capacity versus Settlement.	107
		Temporary Excess Pore Water Pressure	107
		Unanticipated Loading	107
	7.2	Fair Warning	108
		Two Kinds of Decrease in Pore Water Pressure	108
		Drainage	108
		Sensitive Soils	108
	7.3	Foundations on Compacted Soil Fill	108
		Procedure and Performance Tests	109
		Cut-and-Fill	109
	7.4	Bearing Capacity Equations	109
		Equation Development	109
	7.5	Prandtl-Terzaghi Analysis	110
		Rough Base, Smooth Base	112
		Meyerhof's Modification	112
	7.6	Terzaghi Bearing Capacity Factors	112
		Local Shear	115
		Alternative Solutions	115
	7.7	What Is the <i>Real</i> Factor of Safety?	115
	7.8	Bearing Capacity in 3D	116
	7.9	Eccentric Loading	117
		Foundations for Retaining Walls	117
	7.10	Mine Collapse	119
		Shallow Mines	119
		Deep Mines	119
		Dangers of Vertical Mineshafts	119
		Longwall Mining	119
	7.11	A Natural History of Caverns	120
	7.12	Frost Heave and Footing Depth	120
		Arctic Permatrost	121
		Polygonal Ground.	121
		Elongated Lakes	121
		Some Practical Consequences	121
	F 10	Methane Kelease	121
	7.13	When Things Go Wrong	122
		Problems	123
		Keterences	123
		Further Keading	123

8	The S	Standard Penetration Test in Foundation Engineering	125
	8.1	The Empirical Approach	125
	8.2	Soil Penetration Tests	125
		Selective Test Depths	127
		Groundwater	127
		Sample Disturbance	127
		The "Pocket Penetrometer"	128
		Shelby Tube Samples	128
	8.3	SPT in Sand	128
		Depth Correction	128
		A General Depth Correction	129
	8.4	Soil Mechanics of the SPT	130
		What Might Be Achieved by Subtracting Blow Counts?	130
	8.5	The SPT Hammers' Biggest Hits	130
		Adjusting the <i>N</i> Value	130
	8.6	SPT "N" Values and Settlement of Foundations on Sand	132
		A Shallow Depth Correction	132
	8.7	Pressure Bulb Correction	133
	8.8	Bearing Capacity of Sand Based on an Estimated	
		Friction Angle	135
	8.9	Comparisons with Measured Settlements	135
	8.10	Foundation Bearing Capacities on Clay Based on SPT	
		or Unconfined Compressive Strength	136
		Theoretical Foundation Design on Clay Based on Unconfined	
		Compressive Strength	137
		Net Bearing Pressure	137
		Reducing Settlement with a Mat Foundation	137
		Summary	138
		Problems	138
		References	139
		Further Reading	139
9	Prob	ing with Cone Penetration Tests and the	
-	Marc	hetti Dilatometer	141
	9.1	A Classical Approach	141
	9.2	Pushing versus Driving	142
	9.3	A "Friction Ratio"	142
	9.4	Mechanical versus Electrical Cones	143
		The Piezocone	144
		Decision Time: What Are Advantages/Disadvantages of	
		Cone and SPT?	145
		Advantages and Disadvantages of Cone Tests	145
		Piezocone and Groundwater Table	145
	9.5	Fracking (Hydraulic Fracturing)	145
	9.6	Example of Cone Test Data	146
		-	

	9.7	Normalizing Cone Test Data for Test Depth	147
		Dealing with Dimensions	147
	9.8	Cone Test Data and Settlement of Foundations on Sand	148
	9.9	Cone Tests and Foundations on Saturated, Compressible Clay	148
	9.10	Precaution with Empirical Relationships	149
	9.11	Time-outs for Pore Pressure Dissipation	149
	9.12	Supplemental Cone Test Data	149
	9.13	The Marchetti Dilatometer	150
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Preparation for Testing	151
		Soil Identifications	152
	9 1 4	Predicting Settlement	152
	9.15	A Key Question: How Can I ateral Vielding	102
	7.10	Predict Vertical Settlement?	153
			153
		A Dilatomater Shift in Direction of the Major Principal Stress	15/
		Problems	154
		Potoronaco	154
		Eurthon Deading	155
			155
10	Focu	s on Lateral Stress	157
	10.1	Lower Cost, More Convenient	157
	10.2	The Pressuremeter	157
		Soil Disturbance from Drilling	157
		Self-Boring Pressuremeters	158
	10.3	Interpretation of Pressuremeter Test Data	159
		Lateral In Situ Stress	159
		The Limit Pressure in Foundation Engineering	159
		A Theoretical Approach	160
		Use in Design	161
		Soil Identifications	161
	10.4	The K Stepped Blade	161
	10.1	The Two-Chambered Pressure Cell	162
		Test Sequence	163
		Interpretation	163
		Fyample	163
	10.5	Summary	164
	10.0	Problems	165
		Poforoncos	165
		References	105
11	Desig	gn of Deep Foundations	167
	11.1	Transferring a Foundation Load Deep to Reduce Settlement	167
	11.2	When Pile Foundations Became a Matter of Necessity	167
	11.3	Soils and City Planning	167
		Cities and Rivers	168
	11.4	Lowering of Sea Level	168
	11.5	End Bearing	169
	11.6	Pile Driving	169
		Wood Piles	169

	The Science of Hammering	169
	Hard Driving and Brooming of Wood Piles	170
	No Lunch Breaks!	170
11.7	Tension Breaks in Concrete Piles Caused by Pile Driving?	170
	Piles Doing a U-turn.	170
11.8	The Engineering News Formula	170
11.9	Pile Bearing Capacities and Load Tests	171
	Strength Gains and Slow Loading	171
	Anchor Requirements	171
	Conduct of a Test	172
	Criteria for Failure	172
	Marginal Designs	172
11 10	Analyzing Hammer Blows	173
11.10	A Waya Equation for Driven Piles	173
	A Pile Driving Applyzer (PDA)	173
	Moscuring Sotup with PDA and Postriko	173
11 11	Citizon Complainte	174
11.11	Dile Load Capacities: End Bearing	175
11.12	Find Boaring on Book	175
	Poole Ovality	175
	Rock Quality	170
	Rock Bockets	170
	A Critical Double for End Boaring	170
11 1 2	A Critical Depth for End Dearing	170
11.15	Double and Differential Mexament	170
	Negative Chin Emistion (Adhesion)	170
	End Bearing and Chin "Existion"	179
	Lulit from Europeing Class	179
11 1 /		1/9
11.14	A Pard Cases	100
	A bad Scene	180
11 1 -		180
11.15	Saving time and Money on Load Tests with	100
	the Osterberg Cell	180
		180
44.47	Comparisons with Top-Down Load Tests	181
11.16	Franki Piles	182
11.17	Augercast Piles	182
11.10	Jet-Grouted Micropiles	184
11.18	Common Piles Materials	184
	Definitions of a Factor of Safety	184
11.19	Preliminary Estimates for Deep Foundation	
	Bearing Capacity	184
11.20	Pile Group Action	188
	Pile Separation Distances	189
	Pile Group Action Formulas	189
	Batter Piles	190

		Questions	190
		References	191
		Further Reading	191
12	Grou	nd Improvement	193
	12.1	What Is Ground Improvement?	193
	12.2	Preloading	193
		Enhancing and Monitoring the Rate of Settlement	193
		A Complex System	194
	12.3	Compaction	194
		Vibratory Compaction	194
		Deep Dynamic Compaction (DDC)	194
		Blasting	195
		Side Effects from Compaction.	195
	12.4	Soil Replacement or Improvement.	195
		Stone Columns, Aggregate, and Mixed-in-Place Piers	195
	12.5	Grout Materials	197
	12.6	Grout "Take"	197
	12.7	Rammed Aggregate Piers	197
		A "Saw-Tooth" Stress Pattern	199
		Temporary Liquefaction	199
		Tension Cracks Outside the Liquefied Zone	199
	12.8	A Hypothesis of Friction Reversal	200
		Conditioning	201
		Friction Reversal and Overconsolidation	201
	12.9	Advanced Course: Application of Mohr's Theory	201
		Lateral Stress and Settlement	202
		Is Excavation Permitted Close to RAPS?	203
	12.10	Further Developments	203
		RAPS as Anchor Piers	203
		When Soil Does Not Hold an Open Boring	203
		Low-Slump Concrete Piers	203
		Sand Piers	203
		Questions	203
		Reference	204
Ap	pendix	: The Engineering Report and Legal Issues	205
Ind	ex		207

Preface

The thread of learning is strengthened through understanding.

Solution of the solution of th

Targeted Tests

A targeted test is one that is directly applicable for design. An example is a pile load test that relates settlement to the applied load. A load test also can be continued to determine an ultimate bearing capacity. A *plate bearing test* can similarly model a shallow foundation, but scaling down makes the results less directly applicable.

A third approach is to obtain and preserve soil samples in their natural state and test them in a laboratory. The problem then becomes how to collect a soil sample without disturbing it, as even the removal of a confining pressure can effect a change.

An Early Targeted Test

The laboratory consolidation test devised by Karl Terzaghi was targeted to measure soil behavior as it may influence foundation settlement. Observations and measurements made during the tests then led to an important spinoff, the concept that pore water pressure subtracts from normal stress and therefore from friction. That now is considered by many to be the entry point for modern soil mechanics.

A Simple Targeted Test

The plastic limit test must be one of the simplest soil tests ever devised, and results are part of most engineering soil classifications. The test uses hand power to roll out, bunch up, and re-roll threads of soil until it dries out and crumbles. The transition moisture content is the plastic limit. It not only depends on a soil clay content but also on its clay mineralogy, and the test was devised long before it became recognized that there is a clay mineralogy.

Two Requirements in Foundation Design

Requirements are as follows: (1) Settlement must be uniform and must not be excessive, and (2) a foundation must not punch down into the ground in a *bearing capacity* failure. If a near-surface soil is not adequate, deep foundations can transfer loads downward to bear on rock or in more competent soil. A complication for deep foundations is that they can derive support from two sources, end-bearing and side friction, and the two contributions are not separated with ordinary top-load tests. They can be isolated by using an expandable *Osterberg cell* to push up from the bottom. Pile behavior and integrity also can be examined with impacts and sound waves.

A New Role for Lateral Soil Pressure

Laboratory triaxial shear tests define relationships between lateral confining pressure and soil strength and bearing capacity. Field tests have led to the discovery that a high lateral pressure imposed on saturated soil can work a temporary change in the soil behavior, and the change can be an important factor affecting foundation settlement. That development is given special attention in the last chapter of this book.

Soil Origins and Clay Mineralogy

One mistake is one too many, but mistakes happen. In foundation engineering a mistake sometimes can be attributed to a disconnect between engineering purpose and site geology. Most soil is hidden away, and geology and soil science, which emphasizes changes caused by weathering, can reveal where and what to look for. For example, expansive clays that cause no end of engineering problems are far more common than can be shown on small-scale engineering soil maps. The geotechnical engineer who is not cognizant of geological relationships and engineering consequences is riding on one wheel.

The Engineer as Teacher

Case history. An architect designed a building with exterior walls of Italian marble, and was in no mood to spend money for deep foundations or anything else that "would not show." He had to be convinced that without deep foundations, the consequences would show.

Introduction

Some Heroes in Geotechnical/Foundation Engineering

Archimedes (287–212 BC) famously discovered "Archimedes Principle" of buoyancy, which affects soil weight and frictional resistance to sliding. He was killed by a Roman soldier who had no appreciation.

Charles-Augustin de Coulomb (1736–1806) was a French military engineer, and while being in charge of building a fort on the island of Martinique he observed that sand grains must have friction or they would not make a respectable pile. He also reasoned that clay must have cohesion or it would not stand unsupported in a steep bank. Those observations led to the "Coulomb equation" for soil shear strength. Over 100 years later, Karl Terzaghi added the influence from pore water pressure that tends to push grains apart.

Coulomb also derived an equation for the lateral force from soil pushing against a retaining wall. The equation, and a later equation proposed by Rankine, puts the maximum soil pressure at the base of a wall but tests conducted by Terzaghi indicate that it is more likely to be zero. That is no small error because raising the height of the center of pressure increases the overturning moment, which makes the Coulomb and Rankine solutions the unsafe side.

Coulomb's Law

After retiring from the Army, Coulomb entered a contest to invent a better marine compass. He did not win the contest but invented the torsion balance that substitutes twisting of fine wires for knife edges. Coulomb then experimented with his instrument to measure tiny forces from electrical charges, electricity being big at the time, and discovered that forces between two electrically charged particles depend on *square* of the separation distance. Coulomb's Law also governs space travel and orbiting distances of satellites.

William John Macquorn Rankine (1820–1872) was a professor at the University of Glasgow. He was most famous for his analysis of the thermodynamics of steam engines, but he also had a simple solution for soil pressures against retaining walls. He defined an *active state* for soil that is acting to retain itself, and a *passive state* for soil that is being pushed. Rankine's and Coulomb's analyses can give the same answers, but both have a limitation.

Christian Otto Mohr (1835–1918) was a German bridge engineer and a professor of mechanics at Stuttgart and Dresden. He devised the "Mohr circle" graphical method

for depicting soil stresses, and the "Mohr envelope" defines stress conditions for shear failure. It supports Coulomb's soil shear strength equation.

Ludwig Prandtl (1875–1953) was a professor at the University of Hanover, most famous for his contributions to aerodynamics. He also developed a theory for the resistance of metal to penetration by a punch based on a curved failure surface called a *log spiral*.

Karl Terzaghi (1883–1963) was from Austria and was educated in mechanical engineering. However, he also was interested in geology and became a professional geologist. He then used an engineering approach for soil problems, for example, by applying Prandtl's *log spiral* to shallow foundation bearing capacity, a theory and approach that still are widely used. As a professor at Robert College in Turkey, Terzaghi devised the consolidation test and theory for predicting foundation settlement. Those observations led to defining soil shear strength in terms of *effective stress* that takes into account the influence from excess pore water pressure.

Terzaghi also observed that because clay particles must be soft and yielding, contact areas between particles can be expected to vary depending on the contact pressure, which might explain the linear relationship between friction and normal stress. It is the concept that made its way back into mechanical engineering to explain friction. It also can explain the function of a lubricant, to keep surfaces separated.

Geotechnical engineering has grown and continues to grow, and many investigators and practitioners continue to make important contributions. Broad interests, curiosity, imagination, and an interest in working with a complex and somewhat unpredictable natural material are part of the toolkit.

Further Reading

- Bowden, F. P., and Tabor, D., *The Friction and Lubrication of Solids*, Oxford University Press, Oxford, UK, 1950.
- Casagrande, A., "Karl Terzaghi—His Life and Achievements," In *From Theory to Practice in Soil Mechanics*, L. Bjerrum, A. Casagrande, R. B. Peck, and A. W. Skempton, eds. John Wiley & Sons, New York, 1960.
- Handy, R. L., "The Arch in Soil Arching," ASCE Journal of the Geotechnical Engineering Division, 111(GT3):302–318, 1985.

Terzaghi, K., Theoretical Soil Mechanics, John Wiley and Sons, Inc., New York, 1943.

Karl Terzaghi (1883–1963). Pencil sketch by Tauseef Choudry.

This page intentionally left blank

CHAPTER 1 Defining What Is There *Geology and Foundation Engineering*

1.1. The Three Most Common Construction Materials

Concrete has a recipe, steel is made to order and goes by number, and soil and rock are what is there. A first requirement in foundation engineering therefore is to determine and characterize what is there. That requires knowledge or at least familiarity with site geology.

For example, soils of river floodplains are likely to occur as sedimentary layers. A common sequence is clay layers on top of sand layers on top of gravel, as flow velocities decreased during stages of deposition. Soils deposited by winds are more likely to transition horizontally, from sand dunes adjacent to a source to thick, highly erodible deposits of silt that has such an open structure that when saturated with water can collapse under its own weight. With increasing distance from a source the silt is transitional to clay that is particularly troublesome because it is expansive and can lift building foundations in the presence of water.

Procedures used for identifying, boring, probing, sampling, and/or testing vary with different kinds of deposits because of the variability and focus on particular engineering properties. Core samples obtained by pushing a steel tube into the soil are commonly called "undisturbed," but the term is shielded by optimism. A soil that is relieved of existing pressure will respond by simply expanding, so it, to some degree, is disturbed. It also is not possible to accurately reproduce field conditions in a laboratory if, as often is the case, those conditions are not known and are difficult to measure. Many important engineering soil properties are inherited, for example, from having been buried under a thousand meters of glacial ice or a hundred meters or more of soil that has been removed by erosion.

Soils usually are investigated with borings, but there can be no guarantee of what engineering perils may exist between the borings. This limitation is included in every geotechnical report, and usually is written with the assistance of an attorney. Geological awareness can help to make sense out of a situation and can be critical.

Supplementary data can be obtained with geophysical seismic (ground echo) or electrical resistivity tests, and with ground-penetrating radar. Simplest to interpret

is the radar that prints out a running log as the instrument is being pulled over the ground, but a limitation is that the depth scale depends on the moisture content, and penetration is limited.

Most important can be observations of soils and rocks exposed by erosion and occurring in outcrops and excavations. Airphotos and drone photos can reveal patterns that are easily overlooked from the ground. Interpretation depends on a sound knowledge and appreciation for geological origins.

1.2. Two Classes of Foundations

Foundations are described as shallow if they bear on near-surface soils or rocks, and deep if they extend down to firmer soil layers or rock. Deep foundations are more likely to be used to support heavy structures such as multistory buildings, and can be effective even if bedrock support is not available. Shallow foundations may be suitable for supporting lighter weight structures, depending on the firmness of the soil.

Support of Deep Foundations

Two sources of support for a deep foundation are end bearing at the base and shearing resistance along the sides, usually referred to as a *skin friction*. As the contributions involve different soil properties and are unlikely to peak out together, they are analyzed and/or measured separately, as side resistance often peaks out and starts to decline before end bearing is fully mobilized. A further complication is that if the ground settles, usually as a consequence of lowering the groundwater table, then skin friction is reversed, so it pushes down instead of up.

Expansive Clays Can Be Expensive Clays

Near-surface soils in many areas of the world often include clay minerals that expand when wet and shrink when dry, affecting pavements and foundations. The problem is intensified because dry weather is preferred for construction, when the clays are dry and deceptively hard but poised and ready to expand. Floors and foundations usually are raised unevenly, so walls develop diagonal cracks, and door and window frames can be distorted so they no longer are rectangular.

Expansive clays are the most costly problem in geotechnical, highway and foundation engineering, with a tally running into billions of dollars annually in the United States alone. But there are remedies and solutions.

End Bearing on Rock

Solid rock can be an ideal support for foundations but basement excavations may be too costly to be practical. Solid rock can lay buried underneath weathered rock and rock fragments and/or geologically younger soil deposits, so these can be penetrated with borings or driven piles that may require end protection with hardened steel tips.

A particularly serious problem can be shallow underground caverns or mine openings that remain undetected until a heavy load is applied. Caverns are created in limestone where infiltrating seepage water that has been rendered slightly acidic by dissolved carbon dioxide and concentrated at a groundwater table. The caverns therefore may be relatively deep and difficult to detect. In geological time as nearby valleys are eroded deeper, the groundwater level is lowered, so caverns become accessible for spelunking. However, vertical channels appropriately called "glory holes" may connect different cavern levels.

Even shallow limestone may hold some surprises if it has been weathered along vertical fractures that become filled with clay. As this is associated with surface weathering and development of a "soil profile," it is discussed later in this chapter. It is the shallow clay pockets, caverns, and mine openings that are most likely to cause problems.

Ground Improvement

Ground improvement means to improve what is there. A simple procedure is to let a pile of soil stand in for a future foundation until settlement stops, then remove the soil and build the structure. This procedure is particularly useful when a series of similar structures such as apartment houses are to be constructed so that after settlement is complete, the soil can be moved on to the next site. Engineering still is required to determine an appropriate preload pressure, measure settlement, and determine if a well system may be required to assist in the removal of water as it is squeezed out of the soil.

Dynamic compaction: Layers of soil can be spread and compacted with rollers or vibrators to create a structural fill. This procedure can dominate cut-and-fill operations for roads and highways, and can be used for foundations. Careful selection of a satisfactory fill soil is required, and standardized test procedures are used to determine appropriate soil moisture content and acceptance criteria for testing and compaction.

Deep dynamic compaction is more likely to be used to process soil in situ in preparation for a future foundation load. It involves using a crane to repeatedly lift and drop a heavy weight to pound the soil into submission. It is best adapted to rural areas.

Chemical soil stabilization can be achieved by mixing soil, Portland cement, or chemical lime prior with soil and compacting it in layers. For deep in situ stabilization, the lime can be introduced into open borings or mixed with the soil in situ in the borings. Lime reacts chemically with expansive clay minerals, so they harden and become non-expansive.

Procedures for ground improvement have received considerable attention in recent years, and are discussed in more detail in the last chapter in this book.

1.3. Residual Soils

Granite mountains are the ultimate source for most sand. Most granite is igneous rock, which means that at one time it was molten, and then slowly solidified at great depth. Therefore, individual crystals are sand-size and larger. Clear grains are quartz, and pink or white grains are feldspars that are more readily weathered to form clay. As feldspars chemically weather to clay, the grains expand, and granite becomes separated into grains of sand.

Travel Is Wearing

Sand is readily moved by gravity, wind, or water. Close to the source, the sand usually has about the same color as granite because it has the same mineralogical composition, about 25 percent quartz and the remainder feldspars. Farther from a

FIGURE 1.1 Granite is a major component in most mountain ranges and disintegrates along cracks to leave rounded boulders and sand. (Image source: Geotechnical Engineering: Soil and Foundations Principles and Practice by Richard L. Handy and Merlin G. Spangler. McGraw-Hill Educations © 2007.)

source, as feldspars weather and are degraded the mineral percentages are reversed, about 75 percent feldspar and the remainder quartz, with a characteristic tan color from grains being coated with iron oxides and clay. An exception is "Ottawa sand" that is a fossil beach sand and is almost pure quartz. One use is to make glass.

Weathering along cracks in granite leaves rounded boulders, as shown in Fig. 1.1. They obviously have not been rounded by rolling along in streams, as commonly assumed. As a general rule, rocks form mountains, which weather and disintegrate into soil that is moved downhill by water and gravity into adjacent valleys where they can be further modified by weathering or moved along by wind and water.

1.4. Soil Layers Created by Weathering

Topsoil "A Horizon"

Topsoil is preferred for gardening but not for engineering, as it contains organic matter that can separate grains and weaken the soil. Topsoil typically is 1-2 ft (0.2–0.5 m) thick unless eroded. At a construction site, topsoil usually is stripped off and saved for later use as a top dressing for lawns. Topsoil may be black from organic matter, and brown or red-brown from iron oxide coatings on soil grains. When developed under trees it can have a thin gray or white layer because of intense weathering from acid soil conditions.

FIGURE 1.2 A weathered soil profile in expansive clay: Dark, organic *A horizon* topsoil about 8 in. (20 cm) thick on top of brown, clayey *B horizon* subsoil that has a blocky structure indicative of expansive clay. *Olton soil series in western Texas.* (Image source: USDA.)

Subsoil "B Horizon"

Clay that is created by weathering in the overlying A horizon can be carried down with infiltrating rain water to be deposited and concentrated in a relatively thicker subsoil layer called a "B horizon." In temperate climates, B horizons commonly contain concentrated *expansive clay minerals* that shrink when dry and expand when wet. This can cause major problems in engineering.

Shrinkage Cracks and Blocky Structure in Expansive Clays

Vertical shrinkage cracks can define an "active layer" of shrink–swell cycling in expansive clay soils. In a B horizon the cracks can intersect to form a characteristic "subangular blocky" soil structure, as shown in Fig. 1.2. Blocks are coated with thin layers of expansive clay called "clay skins" that prevent bonding, so the soil is avoided for use in foundation engineering.

Case history. Expansive *B horizon* clay soil was recognized and removed from a building site. The pile of soil was not recognized as being expansive and was used as fill soil for another building site, with predictable consequences.

1.5. Vertical Mixing in Expansive Clay

In areas with extended dry seasons, vertical shrinkage cracks can extend a meter or more deep and can define an *active layer* in expansive clay. Cracks are an open invitation for debris and soil that slough off and prevent closing. Repeated open–close cycling then can build up sufficient lateral stress that exceeds the soil unconfined compressive strength, and the soil shears *along inclined planes*.

Shrink–swell cycling, therefore, can eventually mix the A–B horizons into a single thick layer that is expansive and black. The soils have been appropriately referred to as *black cotton soils*. The scientific name is *Vertisol*, for vertical mixing. The soils are bad news for engineering. A clue can be above-ground burials in cemeteries. Various methods can be used to deal with such soils and are discussed in Chap. 4.

1.6. Influence from a Groundwater Table (or Tables)

The level to which water rises in a well defines the groundwater table. It is replenished by seepage so the groundwater level tends to be a weakened expression of hillside surface elevations. Saturation of soil under a groundwater table reduces soil unit weight about one-half; therefore, it can have a major influence on engineering uses as well as contributing to wet basements.

The elevation of a groundwater table obviously is important in engineering, and can be measured from the water level in borings that have been left open for a day or more. The measurements usually are made with a tape that employs an electrical contact.

Groundwater Table and Soil Color

The elevation of a groundwater table can change seasonally depending on rains. Soil below a permanent groundwater level develops a diagnostic gray soil color and is referred to as "unoxidized," as the gray color is attributed to a lack of oxygen dissolved in the water. Infiltrating rainwater contains dissolved oxygen that can react with iron compounds that stain soil grains to a shade of tan or brown. A seasonally changing groundwater level creates a mottled mixture of gray and brown, sometimes with vertical lines of rust concentrated along former root channels.

A color determination has obvious relevance in engineering as it can indicate seasonal variations in the level of a groundwater table. The examination of soil color should proceed and be recorded soon after the soil has been removed from a boring because it can rapidly change upon exposure to air.

Some guidelines for soil color are listed in Table 1.1. *It will be noted that soil color is not revealed by probing*. A more detailed identification can be made using color charts in the Munsell system, and charts showing only colors commonly found in rocks and soils are available from suppliers.

A Perched Groundwater Table

Downward seepage of water through soil may be impeded by a buried layer of clay to create a "perched" groundwater table that is separated from a deeper and more permanent groundwater level. The clay layer often will represent a former ground surface

Black, dark brown	Organic topsoil or A horizon. Avoided in engineering.
Thin, light gray or white	Indicates acidic conditions in soil developed under forest.
Tan or brown	Most common, having been oxidized by exposure to air and therefore above a groundwater table.
Mottled brown and gray	Fluctuating groundwater table. Important to recognize in engineering, seasonal changes in buoyant support reduce shearing resistance.
Gray	 (a) Most commonly indicates reducing conditions from a lack of oxygen below a permanent groundwater table. (b) May be "fossil" in geologically young glacial soils that have been highly compressed and rendered impermeable by a heavy weight of glacial ice.
Blue or green	Excessive reducing conditions indicating marshy conditions. Can be an important clue to a gas leak. Also can occur in soil after prolonged contact with a bituminous pavement.
White, crusty	<i>Caliche</i> : Concentrations of calcium carbonate formed in near-surface soil where the rate of evaporation exceeds the rate of precipitation. Characteristic of near-surface soils in an arid or semiarid climate.

TABLE 1.1 Some Guidelines for Soil Color

with buried *A* and *B* horizons that are called *paleosols*, for ancient soils. A perched groundwater table can be troublesome, as it can drain into an open excavation.

1.7. Intermittent Recycling

Many soils used in engineering are *sediments*, with properties that are defined by their geological origins. In geological time, sediments become compressed and cemented to form sedimentary rocks. Most common is *shale*, which typically is gray, dense, and thinly layered from having been deeply buried prior to being exposed by geological erosion.

Most shales are deposits from shallow seas that covered areas of continents during past geological time. Rocks that are not thinly layered and are composed of clay are *claystones*. Shale usually is dominant, and often is interlayered with sandstone, limestone, and coal.

Shales of intermediate geological age are less likely to be thinly layered and may contain expansive clay minerals and occasional dinosaur tracks. Thin layering is not a criterion for expansive or non-expansive clay.

1.8. Soil Types and Foundations

The simplest foundations are *slab-on-grade*, concrete slabs that are flat and level. If a foundation slab covers expansive clay, the slab will restrict evaporation, and therefore moisture accumulating under a central area will expand the clay and lift the center part of a structure more than the edges. Expansive clay problems are discussed in Chap. 4. *Shallow foundations* extend down through topsoil, but still can be affected by expansive clays.

Column foundations usually are square but can be round. As discussed later in this chapter they can be hit-or-miss when founded on weathered limestone. *Wall foundations*

are linear and more likely to bridge across weak areas. Shallow foundations are commonly used for supporting lightly loaded structures.

Deep foundations initially were straight tree trunks that were stripped of bark and branches. They usually are driven upside-down to take advantage of a natural taper, and still are widely used. Driven piles used to support heavy structures are more likely to be steel or concrete. Steel piles can be pipes, H-beams, or hollow and tapered.

Concrete piles can be driven, or they can be larger in diameter and bored-andpoured. Resistance to lateral forces can be increased by incorporating a "cage" of steel reinforcing that is lowered into the concrete before it sets.

In caving soils that do not hold an open boring, an *augercast pile* is created by twisting a hollow auger that is the full length of a pile into the ground, so soil between the spirals holds the boring open. As the auger is raised, cement grout is pumped down through the center pipe to create a pile from the bottom up. Positive fluid pressure is maintained to prevent caving.

Two classes of deep foundations are end-bearing, which transfer load down to a hard stratum such as bedrock, and *friction* that transfer load to soil that is in contact all along the surface. However, the definition is not exclusive because both mechanisms can contribute, but is highly unlikely that the two resistances will develop and peak out together.

Three consolidation classes of soils: As soil tends to consolidate under its own weight, it typically becomes more supportive with increasing depth. A soil that has been consolidated to equilibrium under existing overburden pressures is said to be *normally consolidated*. Its density and unit weight, therefore, increase with depth.

A soil that has been consolidated under a prior larger overburden pressure is *over-consolidated*. Overconsolidation is advantageous because it can reduce and even prevent significant foundation settlement if the foundation pressure is less than the prior overburden pressure. Some *quasi-elastic* settlement will occur. Overconsolidation can occur with a single emergence–submergence cycle of a groundwater table, so the ideal, normally consolidated soil may be difficult to find in nature.

A soil that is *not* in equilibrium with the existing overburden pressure is said to be *underconsolidated*. This obviously is a potentially unstable condition because if conditions change, the soil may consolidate. In recently deposited soil, the time after deposition may not be sufficient to allow drainage of excess pore water. In that case consolidation is on-going and can be expected to speed up with additional loading. The other common cause for underconsolidation is most likely to be encountered in wind-deposited loess soil, where grains are pulled together by negative (capillary) pressure that can be lost upon saturation with water.

Influence of a Groundwater Table

Even though water can only occupy pore spaces between soil grains, about half of the weight of soil that is under water is supported by buoyancy. As the elevation of a groundwater table depends on the availability of water, it can vary seasonally. However, it is a first-time lowering of a groundwater table that can be most damaging because the soil may be subjected to a load that it has not experienced before. This is most likely to occur in cities, where a surface cover drains carry water away instead of allowing it to penetrate into the ground.

As lowering of a groundwater table removes buoyant support for the soil, even deep foundations such as piles can be affected because if the soil settles